Đặt \(A=\left|2x+3\right|+\left|2x-1\right|\)
Ta có: \(A=\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)
Dấu " = " xảy ra khi \(2x+3\ge0;1-2x\ge0\)
\(\Rightarrow\frac{-3}{2}\le x\le\frac{1}{5}\)
Vậy \(MIN_A=4\) khi \(\frac{-3}{2}\le x\le\frac{1}{5}\)