Đại số lớp 7

LN

given that \(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)

Where are non- zero. The value of y is..................

my friends, help me

MS
6 tháng 7 2017 lúc 9:55

Sửa đề:

\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}\)

Dựa vào t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}=\dfrac{x+y+z}{x+y+x+z+z+y+\left(1+1-2\right)}=\dfrac{x+y+z}{x+x+y+y+z+z}=\dfrac{1\left(x+y+z\right)}{2\left(x+y+z\right)}=\dfrac{1}{2}\)\(x+y+z=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)

\(2y=x+z+1\)

\(3y=\dfrac{1}{2}+1\)

\(y=\dfrac{1}{2}\)

Bình luận (1)
NT
6 tháng 7 2017 lúc 9:48

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)

\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)

\(\Rightarrow2y=x+z+1\)

\(\Rightarrow3y=x+y+z+1\)

\(\Rightarrow3y=\dfrac{1}{2}+1\)

\(\Rightarrow y=\dfrac{1}{2}\)

Vậy...

Bình luận (10)
DT
6 tháng 7 2017 lúc 9:58

Sửa đề như Hồng Phúc Nguyễn

undefined

Vậy y=1/2

Bình luận (0)
LN
6 tháng 7 2017 lúc 10:20

thanksssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

hihihihi

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
TD
Xem chi tiết
NL
Xem chi tiết
ND
Xem chi tiết
JK
Xem chi tiết
DY
Xem chi tiết
MM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết