Ôn tập: Bất phương trình bậc nhất một ẩn

VA

giúp mk làm nốt câu này với,cảm ơn trước nhá

undefined

AH
28 tháng 8 2021 lúc 11:31

Lời giải:

a.

\(G=\frac{x^2-4}{x+1}+\frac{2}{x+1}:\frac{(2x-3)(x+1)-(2x+1)(x-1)}{(x-1)(x+1)}\)

\(=\frac{x^2-4}{x+1}+\frac{2}{x+1}:\frac{-2}{(x-1)(x+1)}=\frac{x^2-4}{x+1}+\frac{2}{x+1}.\frac{(x+1)(x-1)}{-2}\)

\(=\frac{x^2-4}{x+1}-(x-1)=\frac{x^2-4-(x^2-1)}{x+1}=\frac{-3}{x+1}\)

b.

Để $A\in\mathbb{Z}^+$ thì $x+1$ là ước âm của $-3$

$\Rightarrow x+1\in\left\{-1;-3\right\}$

$\Leftrightarrow x\in\left\{-2;-4\right\}$ (tm)

c.

$G< -1\Leftrightarrow \frac{-3}{x+1}+1< 0$

$\Leftrightarrow \frac{x-2}{x+1}< 0$

$\Leftrightarrow x-2<0< x+1$ hoặc $x-2>0>x+1$

$\Leftrightarrow -1< x< 2$ (chọn) hoặc $-1> x>2$ (loại)

Vậy $-1< x< 2$ và $x\neq 1$

 

 

 

Bình luận (1)
NT
28 tháng 8 2021 lúc 14:25

Bài 8:

a: Ta có: \(G=\dfrac{x^2-4}{x+1}+\dfrac{2}{x+1}:\left(\dfrac{2x-3}{x-1}-\dfrac{2x+1}{x+1}\right)\)

\(=\dfrac{x^2-4}{x+1}+\dfrac{2}{x+1}:\dfrac{2x^2+2x-3x-3-2x^2+2x-x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-2\right)\left(x+2\right)}{x+1}+\dfrac{2}{x+1}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-2}\)

\(=\dfrac{\left(x-2\right)\left(x+2\right)}{x+1}+\dfrac{-x+1}{1}\)

\(=\dfrac{x^2-4-\left(x-1\right)\left(x+1\right)}{x+1}\)

\(=\dfrac{x^2-4-x^2+1}{x+1}\)

\(=-\dfrac{3}{x+1}\)

Bình luận (1)
NT
29 tháng 8 2021 lúc 0:30

c: Để G<-1 thì G+1<0

\(\Leftrightarrow\dfrac{-3+x+1}{x+1}< 0\)

\(\Leftrightarrow\dfrac{x-2}{x+1}< 0\)

\(\Leftrightarrow-1< x\le2\)

Kết hợp ĐKXĐ, ta được:

\(\left\{{}\begin{matrix}-1< x\le2\\x\ne1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
VA
Xem chi tiết
VA
Xem chi tiết
VA
Xem chi tiết
VA
Xem chi tiết
VA
Xem chi tiết
VA
Xem chi tiết
TM
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết