H24

undefinedgiúp mình với ạ.Mình cần lời giải chi tiết

Mình cảm ơn

LK
25 tháng 4 2022 lúc 22:34

a) xét delta phẩy ta có b'2 - ac 

<=> 4 - m 

b) để pt 1 luôn có nghiệm thì delta phẩy ≥ 0 

=> 4-m ≥ 0 => m ≤ 4

c) xét delta phẩy của pt (1) ta có 

4 - m để pt có 2 nghiệm x1,x2 thì delta phẩy ≥ 0 => m ≤ 4 

theo Vi-ét ta có:\(\left\{{}\begin{matrix}x1+x2=4\\x1x2=m\end{matrix}\right.\)

theo bài ra ta có: x12 + x22 = 12 <=> ( x1+x2 )2 - 2x1x2 = 12 

<=> 16 - 2m -12 = 0 <=> 2m = 4 <=> m = 2 ( thỏa đk)

vậy m = 2 thì pt thỏa mãn điều kiện.

d) A= x12 + x22 

<=> A = (x1+x2)2 - 2x1x2 

<=> A = 16 - 2m ta có m ≤ 4 

nên giá trị lớn nhất của m = 4 

vậy giá trị nhỏ nhất của A = 16 - 2.4 

GTNN của A = 8 dấu "=" xảy ra khi m = 4 

Bình luận (0)
PG
25 tháng 4 2022 lúc 22:49

a) Ta có: a = 1 ; b' = -2 ; c = m

⇒ △' = b'2 - ac = ( -2 )2 - 1 .m = 4 - m

b) Để phương trình luôn có nghiệm thì △' \(\ge\) 0

⇒  4 - m \(\ge\) 0  ⇔ m \(\le\) 4

Vậy khi m \(\le\) 4 thì phương trình luôn có nghiệm

c) Theo câu (b) thì phương trình luôn có nghiệm khi m \(\le\) 4

Theo hệ thức Vi - ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=4\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

Do đó: 

\(x_1^2+x_2^2=12\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=12\)

\(\Leftrightarrow4^2-2m=12\)

\(\Leftrightarrow4=2m\Leftrightarrow m=2\)

Vậy khi m = 2 thì phương trình (1) có 2 nghiệm x1 ; x2 thỏa mãn x12 + x22 = 12 

            

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
QA
Xem chi tiết
HM
Xem chi tiết
TK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
VD
Xem chi tiết
NP
Xem chi tiết