Violympic toán 9

AJ

Giải phương trình: \(\left(\sqrt{3x+1}-\sqrt{x+2}\right)\left(\sqrt{3x^2+7x+2}+4\right)=4x-2\)

NL
28 tháng 6 2020 lúc 18:00

ĐKXĐ: \(x\ge-\frac{1}{3}\)

Do \(\sqrt{3x+1}+\sqrt{x+2}>0;\forall x\ge-\frac{1}{3}\)

Nhân 2 vế của pt với \(\sqrt{3x+1}+\sqrt{x+2}\) và rút gọn ta được:

\(\left(2x-1\right)\left(\sqrt{3x^2+7x+2}+4\right)=2\left(2x-1\right)\left(\sqrt{3x+1}+\sqrt{x+2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\sqrt{3x^2+7x+2}+4=2\left(\sqrt{3x+1}+\sqrt{x+2}\right)\left(1\right)\end{matrix}\right.\)

Xét (1)

\(\Leftrightarrow\sqrt{\left(3x+1\right)\left(x+2\right)}-2\sqrt{3x+1}-2\left(\sqrt{x+2}-2\right)=0\)

\(\Leftrightarrow\sqrt{3x+1}\left(\sqrt{x+2}-2\right)-2\left(\sqrt{x+2}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{3x+1}-2\right)\left(\sqrt{x+2}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=2\\\sqrt{x+2}=2\end{matrix}\right.\) \(\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
NY
Xem chi tiết
NT
Xem chi tiết
BL
Xem chi tiết
KN
Xem chi tiết
BA
Xem chi tiết
BB
Xem chi tiết
PT
Xem chi tiết
NY
Xem chi tiết