\(\left\{{}\begin{matrix}x^3-3x=y^3-3y\left(1\right)\\x^6+y^6=1\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\)
Vì \(x^6+y^6=1\)
\(\Rightarrow\left|x\right|,\left|y\right|\le1\)
\(\Rightarrow x^2+xy+y^3< 3\)
Với \(x=y\)
\(\Rightarrow2x^6=1\)
\(\Rightarrow x=y=\pm\dfrac{1}{\sqrt[6]{2}}\)