Ôn tập hệ hai phương trình bậc nhất hai ẩn

NH

giải hệ phương trình bằng phương pháp đặt ẩn phụ

H9
25 tháng 1 lúc 7:12

\(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{3}{2}+\dfrac{1}{y}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{24}\end{matrix}\right.\) (Đk: x,y ≠ 0) 

Đặt: \(\dfrac{1}{x}=u;\dfrac{1}{y}=v\) 

Hệ trở thành:

\(\left\{{}\begin{matrix}u=\dfrac{3}{2}+v\\u+v=\dfrac{1}{24}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{3}{2}+v\\\dfrac{3}{2}+v+v=\dfrac{1}{24}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{3}{2}+v\\2v=-\dfrac{35}{24}\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{37}{48}\\v=-\dfrac{35}{48}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{37}{48}\\\dfrac{1}{y}=\dfrac{-35}{48}\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{48}{37}\\y=-\dfrac{48}{35}\end{matrix}\right.\)

Vậy: \(\left(x;y\right)=\left(\dfrac{48}{37};-\dfrac{48}{35}\right)\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
PH
Xem chi tiết
TA
Xem chi tiết
HT
Xem chi tiết
HD
Xem chi tiết
KC
Xem chi tiết
HN
Xem chi tiết
JP
Xem chi tiết