Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

H24

giải gấp giúp em chi tiết 3 bài này với ạ

a) sin4x +cos4x =  √3
b) 3sinx + √3.cosx = 1
c)  √3.cosx + sinx = - √2

NL
16 tháng 7 2021 lúc 19:47

a.

\(\Leftrightarrow\dfrac{\sqrt{2}}{2}sin4x+\dfrac{\sqrt{2}}{2}cos4x=\dfrac{\sqrt{6}}{2}\)

\(\Leftrightarrow cos4x.cos\left(\dfrac{\pi}{4}\right)+sin4x.sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{6}}{2}\)

\(\Leftrightarrow cos\left(4x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{6}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-\dfrac{\pi}{4}=arccos\left(\dfrac{\sqrt{6}}{2}\right)+k2\pi\\4x-\dfrac{\pi}{4}=-arccos\left(\dfrac{\sqrt{6}}{2}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{16}+\dfrac{1}{4}arccos\left(\dfrac{\sqrt{6}}{2}\right)+\dfrac{k\pi}{4}\\x=\dfrac{\pi}{16}-\dfrac{1}{4}arccos\left(\dfrac{\sqrt{6}}{2}\right)+\dfrac{k\pi}{4}\end{matrix}\right.\)

Bình luận (0)
NL
16 tháng 7 2021 lúc 19:50

b.

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=\dfrac{\sqrt{3}}{6}\)

\(\Leftrightarrow cosx.cos\left(\dfrac{\pi}{3}\right)+sinx.sin\left(\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{6}\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=arccos\left(\dfrac{\sqrt{3}}{6}\right)+k2\pi\\x-\dfrac{\pi}{3}=-arccos\left(\dfrac{\sqrt{3}}{6}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+arccos\left(\dfrac{\sqrt{3}}{6}\right)+k2\pi\\x=\dfrac{\pi}{3}-arrcos\left(\dfrac{\sqrt{3}}{6}\right)+k2\pi\end{matrix}\right.\)

Bình luận (0)
NL
16 tháng 7 2021 lúc 19:52

c.

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow cosx.cos\left(\dfrac{\pi}{6}\right)+sinx.sin\left(\dfrac{\pi}{6}\right)=cos\left(\dfrac{3\pi}{4}\right)\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=cos\left(\dfrac{3\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{3\pi}{4}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11\pi}{12}+k2\pi\\x=-\dfrac{7\pi}{12}+k2\pi\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
ND
Xem chi tiết
CH
Xem chi tiết
H24
Xem chi tiết
JE
Xem chi tiết
LN
Xem chi tiết
HA
Xem chi tiết
NH
Xem chi tiết
ST
Xem chi tiết