Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 7

HL

Giả sử a,b,c là các số thỏa mãn a+b+c=259 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=15\). Khi đó giá trị của biểu thức \(Q=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=...\)

AH
26 tháng 1 2018 lúc 10:08

Lời giải:

Ta có: \(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(Q+3=\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\)

\(Q+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)

\(Q+3=\frac{259}{a+b}+\frac{259}{b+c}+\frac{259}{a+c}=259\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\)

\(Q+3=259.15=3885\)

\(\Rightarrow Q=3885-3=3882\)

Bình luận (0)

Các câu hỏi tương tự
BU
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
DP
Xem chi tiết
YA
Xem chi tiết
TN
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết