\(G=\frac{1}{3}+\frac{1}{15}+...+\frac{1}{9999}\)
\(\Leftrightarrow G=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(\Leftrightarrow G=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Leftrightarrow G=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(\Leftrightarrow G=\frac{1}{2}.\frac{100}{101}\)
\(\Leftrightarrow G=\frac{50}{101}\)
Vậy : \(G=\frac{50}{101}\)