Violympic toán 7

TM

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)\(x^2+y^2+2z^2=108\)

TL
25 tháng 11 2018 lúc 20:55

Theo đề : \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)\(x^2+y^2+2z^2=108\)

\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=\left(\dfrac{z}{4}\right)^2\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=2.\left(\dfrac{z}{4}\right)^2=>\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}=\dfrac{x^2+y^2+2z^2}{4+9+32}=\dfrac{108}{45}=\dfrac{12}{5}\)

Với \(\dfrac{x^2}{2}=\dfrac{12}{5}\Rightarrow x^2=\dfrac{12}{5}.2=\dfrac{24}{5}\Rightarrow x=\dfrac{2\sqrt{30}}{5}\)

\(\dfrac{y^2}{3}=\dfrac{12}{5}\Rightarrow y^2=\dfrac{12}{5}.3=\dfrac{36}{5}\Rightarrow y=\dfrac{6\sqrt{5}}{5}\)

\(\dfrac{2z^2}{4}=\dfrac{12}{5}\Rightarrow2z^2=\dfrac{12}{5}.4=\dfrac{48}{5}\Rightarrow z^2=\dfrac{24}{5}=>\dfrac{2\sqrt{30}}{5}\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết
CV
Xem chi tiết
GP
Xem chi tiết
TL
Xem chi tiết
CK
Xem chi tiết
NK
Xem chi tiết