\(=3.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{47.49}\right)\)
\(=3.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
\(=3.\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\)
\(=3.\dfrac{46}{147}\)
\(=\dfrac{46}{49}\)
\(\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{47.49}\)
=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\)
=\(\dfrac{3}{2}.\dfrac{46}{147}\)
=\(\dfrac{23}{49}\)
=3/2.(1/3-1/5+1/5-1/7+...+1/47-1/49)
=3/2.(1/3-1/49)
=3/2.46/147=23/49
\(\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{47.49}\)
= \(\dfrac{3}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{47.49}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\) = \(\dfrac{3}{2}.\left(\dfrac{49}{147}-\dfrac{3}{147}\right)\)
= \(\dfrac{3}{2}.\dfrac{46}{147}\)
= \(\dfrac{23}{49}\)