=> 3.( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{100.101}\))
=> 3.(\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+...+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\))
=> 3.(\(\dfrac{1}{1}\)-\(\dfrac{1}{101}\))
=> 3. \(\dfrac{100}{101}\)
=> \(\dfrac{300}{101}\)
Tick cho mk nhé, chúc bạn học tốt
\(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{100.101}\)
= \(3.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{100.101}\right)\)
= \(3.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...\dfrac{1}{100}-\dfrac{1}{101}\right)\).
= \(3.\left(1-\dfrac{1}{101}\right)\)= \(3.\dfrac{100}{101}=\dfrac{300}{101}\).
\(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{100.101}\)
\(=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\right)\)
\(=3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\)
\(=3\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)
\(=3\left(1-\dfrac{1}{101}\right)\)
\(=3.\dfrac{100}{101}\)
\(=\dfrac{300}{101}\)
Vậy \(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{100.101}=\dfrac{300}{101}\)
\(\dfrac{3}{1.2}+\dfrac{3}{2.3}+...+\dfrac{3}{100.101}\)
\(=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{100.101}\right)\)
\(=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\)
\(=3\left(1-\dfrac{1}{101}\right)\)
=\(3\times\dfrac{100}{101}\)
=\(\dfrac{300}{101}\)