Ôn tập toán 6

HM

\(\dfrac{1}{10}\)+\(\dfrac{1}{40}\)+\(\dfrac{1}{88}\)+\(\dfrac{1}{154}\)+\(\dfrac{1}{238}\)+\(\dfrac{1}{340}\)

PT
22 tháng 5 2017 lúc 20:58

Giải:

Đặt \(A=\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}+\dfrac{1}{238}+\dfrac{1}{340}\)

\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+\dfrac{1}{14.17}+\dfrac{1}{17.20}\)

\(A=\dfrac{1}{3}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\)

\(A=\dfrac{1}{3}.\left(\dfrac{1}{2}-\dfrac{1}{20}\right)\)

\(A=\dfrac{1}{3}.\dfrac{9}{20}\)

\(A=\dfrac{3}{20}\)

Bình luận (3)
H24
23 tháng 5 2017 lúc 6:24

\(\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}+\dfrac{1}{238}+\dfrac{1}{340}\)

\(=\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+....+\dfrac{1}{14.17}+\dfrac{1}{17.20}\right)\div3\)

\(=\left(\dfrac{1}{2}-\dfrac{1}{20}\right)\div3\)

\(=\dfrac{9}{20}\div3\)

= \(\dfrac{3}{20}\)

Bình luận (2)
NT
23 tháng 5 2017 lúc 9:44

Đặt A=\(\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}+\dfrac{1}{238}+\dfrac{1}{340}\)

A= \(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+\dfrac{1}{14.17}+\dfrac{1}{17.20}\) 3A= \(3\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+\dfrac{1}{14.17}+\dfrac{1}{17.20}\right)\) 3A= \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}\) 3A = \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}\) 3A= \(\dfrac{1}{2}-\dfrac{1}{20}\)

3A= \(\dfrac{9}{20}\)

A = \(\dfrac{9}{20}:3\)

A = \(\dfrac{3}{20}\)

Vậy A= \(\dfrac{3}{20}\)

Chúc bạn học tốt hihi

Bình luận (1)

Các câu hỏi tương tự
HM
Xem chi tiết
DC
Xem chi tiết
NQ
Xem chi tiết
WK
Xem chi tiết
TH
Xem chi tiết
LD
Xem chi tiết
BT
Xem chi tiết
PT
Xem chi tiết
VN
Xem chi tiết