\(xy=x+y\Leftrightarrow xy-y=x\)
\(\Leftrightarrow y\left(x-1\right)=x\Leftrightarrow y=\dfrac{x}{x-1}\)
Ta có: \(\dfrac{x}{x-1}=\dfrac{x-1+1}{x-1}=\dfrac{x-1}{x-1}+\dfrac{1}{x-1}=1+\dfrac{1}{x-1}\)
Suy ra \(1⋮x-1\Rightarrow x-1\inƯ\left(1\right)=\left\{1;-1\right\}\)\(\Rightarrow x\in\left\{2;0\right\}\)
*)Xét \(x=0\Rightarrow y=\dfrac{x}{x-1}=\dfrac{0}{0-1}=0\)
*)Xét \(x=2\Rightarrow y=\dfrac{x}{x-1}=\dfrac{2}{2-1}=\dfrac{2}{1}=2\)
Có 2 cặp số nguyên \((x;y)\) thỏa mãn