Ôn tập toán 8

BM

CMR: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\) với a,b,c > 0

HN
18 tháng 8 2016 lúc 11:23

Đặt x = a+b , y = b+c , z = c+a

=> \(\begin{cases}a=\frac{x+z-y}{2}\\b=\frac{x+y-z}{2}\\c=\frac{y+z-x}{2}\end{cases}\)

Thay vào tính : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{x+z-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\right]-\frac{3}{2}\) 

\(\ge\frac{1}{2}\left(2+2+2\right)-\frac{3}{2}=\frac{3}{2}\)

Bình luận (2)
SL
5 tháng 11 2016 lúc 16:52

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
CG
Xem chi tiết
LD
Xem chi tiết
AD
Xem chi tiết
AD
Xem chi tiết
LD
Xem chi tiết
BV
Xem chi tiết