\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{99^2}\)
\(A< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{98.99}\)
\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{99}\)
\(A< 2-\frac{1}{99}< 2\)
Vậy A < 2
Đúng 0
Bình luận (0)
\(\Rightarrow A< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}\)
\(\Rightarrow A< 2-\frac{1}{99}< 2\)
\(\Rightarrow A< 2\)
Đúng 0
Bình luận (0)