Đại số lớp 7

DT

CMR: \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{119}}⋮102\)

SG
23 tháng 10 2016 lúc 10:42

Ta có:

\(220\equiv0\left(mod2\right)\Rightarrow220^{119^{60}}\equiv0\left(mod2\right)\)

\(119\equiv1\left(mod2\right)\Rightarrow119^{69^{220}}\equiv1\left(mod2\right)\)

\(69\equiv-1\left(mod2\right)\Rightarrow69^{220^{119}}\equiv-1\left(mod2\right)\)

Vậy \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{199}}\equiv0+1+\left(-1\right)\left(mod2\right)\)

hay \(A⋮2\left(1\right)\)

\(220\equiv1\left(mod3\right)\Rightarrow220^{119^{60}}\equiv1\left(mod3\right)\)

\(119\equiv-1\left(mod3\right)\Rightarrow119^{69^{220}}\equiv-1\left(mod3\right)\)

\(69\equiv0\left(mod3\right)\Rightarrow69^{220^{119}}\equiv0\left(mod3\right)\)

Vậy \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\equiv1+\left(-1\right)+0\left(mod3\right)\)

hay \(A⋮3\left(2\right)\)

\(220\equiv-1\left(mod17\right)\Rightarrow220^{119^{60}}\equiv-1\left(mod17\right)\)

\(119\equiv0\left(mod17\right)\Rightarrow119^{69^{220}}\equiv0\left(mod17\right)\)

\(69\equiv1\left(mod17\right)\Rightarrow69^{220^{119}}\equiv1\left(mod17\right)\)

Vậy \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\equiv-1+0+1\left(mod17\right)\)

hay \(A⋮17\left(3\right)\)

Từ (1); (2); (3), do 2; 3; 17 nguyên tố cùng nhau từng đội một nên

\(A⋮2.3.17=102\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
DC
Xem chi tiết
CU
Xem chi tiết
QS
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
DQ
Xem chi tiết
ND
Xem chi tiết
MM
Xem chi tiết