Bài 8 : Tính chất cơ bản của phép cộng phân số

H24

Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\) :

S = \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)

H24
6 tháng 4 2019 lúc 21:06

\(S=\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)(có 50 số hạng)\(=\frac{50}{100}=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\) .

Bình luận (0)
H24
6 tháng 4 2019 lúc 21:12

Có: \(\frac{1}{50}>\frac{1}{100}\\ \frac{1}{51}>\frac{1}{100}\\ \frac{1}{52}>\frac{1}{100}\\ .\\ .\\ .\\ \frac{1}{98}>\frac{1}{100}\\ \frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)(có 50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}\cdot50\)

\(\Rightarrow S>\frac{50}{100}\)

\(\Rightarrow S>\frac{1}{2}\left(đpcm\right)\)

Bình luận (0)
NC
7 tháng 4 2019 lúc 16:41

\(S=\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (có 50 p/s \(\frac{1}{100}\))

\(\Rightarrow S>\frac{50}{100}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

\(\Rightarrow\) đpcm

Bình luận (0)
CT
8 tháng 4 2019 lúc 20:39
https://i.imgur.com/65hhtWA.png
Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
NL
Xem chi tiết
NS
Xem chi tiết
NO
Xem chi tiết
NT
Xem chi tiết
NS
Xem chi tiết
NK
Xem chi tiết
QL
Xem chi tiết
DP
Xem chi tiết