Violympic toán 6

DG

Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11 ( chẳng hạn số 328328 chia hết cho 11 )

TH
4 tháng 10 2017 lúc 12:00

Ta có:

\(\overline{abcabc}=1001\overline{abc}=11.99\overline{abc}\)

\(11.99\overline{abc}\) \(⋮\) 11 nên \(\overline{abcabc}\) \(⋮\) 11

\(\Rightarrow\text{Điều phải chứng minh}\)

Bình luận (0)
PD
4 tháng 10 2017 lúc 20:48

Vì x ⋮ 11 <=> (a0+a2+a4+...) - (a1+a3+a5+...) ⋮ 11

=> (c+a+b) - (b+c+a) = 0 ⋮ 11

Vậy dạng abcabc bao giờ cũng chia hết cho 11.

Bình luận (0)
HB
5 tháng 10 2017 lúc 18:38

abcabc=a.100000+b.10000+c.1000+a.100+b.10+c.1

=a.100100+b.10010+c.1001

=a00.1001+b0.1001+c.1001

=abc.1001

=(abc.91).11 chia hết cho 11

=> abcabc chia hết cho 11

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
DG
Xem chi tiết
TP
Xem chi tiết
HS
Xem chi tiết
KA
Xem chi tiết
DX
Xem chi tiết
DC
Xem chi tiết
TM
Xem chi tiết
PB
Xem chi tiết