Chương III : Phân số

TL

Chứng tỏ rằng: \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}< \dfrac{1}{2}\)

AH
23 tháng 4 2018 lúc 23:34

Lời giải:

Ta có:

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{100-99}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Vậy ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
CV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NX
Xem chi tiết
NX
Xem chi tiết
BV
Xem chi tiết
NX
Xem chi tiết
NX
Xem chi tiết