Ôn tập toán 6

NM

Chứng minh rằng : Nếu a là một số lẻ không chia hết cho 3 thì a mũ 2 - 1 chia hết cho 6

HG
15 tháng 7 2016 lúc 21:41

- a là số lẻ => a2 là số lẻ

Mà 1 lẻ

=> a2 - 1 chẵn

=> a2 - 1 chia hết cho 2 (1)

- Có a là số lẻ không chia hết cho 3

=> a chia 3 dư 1 hoặc 2

=> a2 chia 3 dư 1

=> a2 - 1 chia hết cho 3 (2)

Từ (1) và (2)

=> a2 - 1 chia hết cho 6 (Đpcm)

 

Bình luận (2)
KS
6 tháng 11 2016 lúc 16:14

Do a lẻ =>a2 lẻ=> a2-1 là chẵn =>a2-1 chia hết cho 2 (1)

Do a ko chia hết cho 3 => a2 ko chia hết cho 3 =>a2 chia 3 dư 1=> a2-1 chia hết cho 3 (2)

Từ (1) và (2),(1;2)=1 =>a2-1 chia hết cho 6

Bình luận (0)
HQ
12 tháng 1 2018 lúc 21:39

Ta có:

a là số lẻ

a2 là số lẻ

a2 - 1 là số chẵn

a2 - 1 2

Mà a không chia hết cho 3

a2 chia 3 dư 1

a2 - 1 3

a2 - 1 2;3

a2 - 1 6

Vậy nếu a là một số lẻ không chia hết cho 3 thì a2 - 1 chia hết cho 6 ( ĐPCM )

Bình luận (0)
TA
4 tháng 4 2022 lúc 22:20

Mình làm(Đã được thầy chữa 100%)

Ta có a là 1 số lẻ => a không chia hết cho 2

Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)

=> a sẽ có dạng 6k+1 hoặc 6k + 5

Khi a = 6k+1, ta có:

a2-1 = (6k+1)2 - 1

        = (6k+1).(6k+1)-1

        = (6k+1).6k + (6k+1).1 -1

        = 36k2 + 6k + 6k + 1 -1

        = 36k2 + 6k + 6k = 36k2 + 12k

        = 6(6k2 + 2k)

        => a2-1 chia hết cho 6

Khi a = 6k+5, ta có:

a2- 1 = (6k + 5)2- 1

         = (6k + 5).(6k+5)-1

         = (6k + 5).6k + (6k + 5).5 - 1

         = 36k2 + 30k + 30k + 24

         = 6(6k2 + 5k + 5k + 4)

         => a2-1 chia hết cho 6

@Trịnh Đức Anh

~~~~~~~~~~~~~~~~~~Học tập tốt~~~~~~~~~~~~~~~~~~

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KS
Xem chi tiết
NM
Xem chi tiết
KP
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
MD
Xem chi tiết
MD
Xem chi tiết
PA
Xem chi tiết
YN
Xem chi tiết