Ôn tập toán 6

H24

Chứng minh rằng

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{n^2}< 1\)

H24
19 tháng 3 2017 lúc 21:50

\(Vì\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};.....;\dfrac{1}{n^2}< \dfrac{1}{(n-1).n}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{\left(n-1\right).1}< 1\)\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{n^2}< 1\left(đpcm\right)\)

vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{n^2}< 1\)

Bình luận (1)
TH
19 tháng 3 2017 lúc 21:55

ĐặtA= \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}\)

Do \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

.............

\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)

Cộng vế với vế ta suy ra : A<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{\left(n-1\right)n}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-....-\dfrac{1}{\left(n-1\right)}+\dfrac{1}{n-1}-\dfrac{1}{n}\)

=\(1-\dfrac{1}{n}\)

Mà 1-\(\dfrac{1}{n}\)<1

=> A<1 (đpcm)

Bình luận (0)
BC
19 tháng 3 2017 lúc 22:30

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(=1-\dfrac{1}{n}< 1\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) (đpcm)

Bình luận (0)
NH
19 tháng 3 2017 lúc 22:42

Đặt A=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+....+ \(\dfrac{1}{n^2}\)

Ta có: \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\)=1-\(\dfrac{1}{2}\)

\(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\)=\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)

...............

\(\dfrac{1}{n^2}\)<\(\dfrac{1}{\left(n-1\right).n}\)=\(\dfrac{1}{n-1}\)-\(\dfrac{1}{n}\)

->\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{n^2}\)<1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)+.....+\(\dfrac{1}{n-1}\)-\(\dfrac{1}{n}\)

=> A<1-\(\dfrac{1}{n}\)<1

vậy A<1 ( điều phải chứng minh)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
TQ
Xem chi tiết
KL
Xem chi tiết
YA
Xem chi tiết
NK
Xem chi tiết
NT
Xem chi tiết
KK
Xem chi tiết
NA
Xem chi tiết
DT
Xem chi tiết