Violympic toán 6

SM

Chứng minh rằng:

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

NQ
16 tháng 4 2017 lúc 18:17

Ta có:

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)

Bình luận (1)

Các câu hỏi tương tự
VT
Xem chi tiết
DT
Xem chi tiết
PR
Xem chi tiết
DT
Xem chi tiết
MD
Xem chi tiết
SM
Xem chi tiết
NS
Xem chi tiết
Xem chi tiết
LA
Xem chi tiết