Ôn tập toán 6

HV

Chứng minh rằng: \(\dfrac{11}{15}< \dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}< \dfrac{3}{2}\)

\(\dfrac{11}{15}< \dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}< \dfrac{3}{2}\)

XT
27 tháng 4 2017 lúc 0:39

Đặt A=\(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{60}\)

A=\(\left(\dfrac{20}{20.21}+\dfrac{21}{21.22}+...+\dfrac{39}{39.40}\right)+\left(\dfrac{40}{40.41}+\dfrac{41}{41.42}+...+\dfrac{59}{59.60}\right)\)

=>A >\(20\cdot\left(\dfrac{1}{20.21}+\dfrac{1}{21.22}+...+\dfrac{1}{39.40}\right)+40\cdot\left(\dfrac{1}{40.41}+\dfrac{1}{41.42}+...+\dfrac{1}{59.60}\right)\)

A>\(20\cdot\left(\dfrac{1}{20}-\dfrac{1}{40}\right)+40\cdot\left(\dfrac{1}{40}-\dfrac{1}{60}\right)=\dfrac{5}{6}>\dfrac{11}{15}\)

Mặt khác: A<\(40\cdot\left(\dfrac{1}{20.21}+\dfrac{1}{21.22}+...+\dfrac{1}{39.40}\right)+60\cdot\left(\dfrac{1}{40.41}+\dfrac{1}{41.42}+...+\dfrac{1}{59.60}\right)\)

A<\(40\cdot\left(\dfrac{1}{20}-\dfrac{1}{40}\right)+60\cdot\left(\dfrac{1}{40}-\dfrac{1}{60}\right)=\dfrac{3}{2}\)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
TD
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết