Ta có: \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}.\left[\left(\frac{1}{20}-\frac{1}{23}\right)+\left(\frac{1}{23}-\frac{1}{26}\right)+\left(\frac{1}{26}-\frac{1}{29}\right)+...+\left(\frac{1}{77}-\frac{1}{80}\right)\right]\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}=\frac{1}{80}\) \(< \frac{1}{9}\)
Vậy \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}< \frac{1}{9}\)