Violympic toán 7

TK

Cho x,y,z,t \(\in\)N*.CMR giá trị của biểu thức

M=\(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\) không là số tự nhiên

H24
28 tháng 10 2017 lúc 6:18

\(M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)

Ta có:

\(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}>\dfrac{x}{x+y+z+t}\\\dfrac{y}{x+y+t}>\dfrac{y}{x+y+z+t}\\\dfrac{z}{y+z+t}>\dfrac{z}{x+y+z+t}\\\dfrac{t}{x+z+t}>\dfrac{t}{x+y+z+t}\end{matrix}\right.\) Cộng theo \(3\) vế ta có:

\(M>\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}=1\)

Lại có:

\(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}< \dfrac{x+t}{x+y+z+t}\\\dfrac{y}{x+y+t}< \dfrac{y+z}{x+y+z+t}\\\dfrac{z}{y+z+t}< \dfrac{z+x}{x+y+z+t}\\\dfrac{t}{x+z+t}< \dfrac{t+y}{x+y+z+t}\end{matrix}\right.\)Cộng theo \(3\) vế ta có:

\(M< \dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}=2\)Như vậy \(1< M< 2\Leftrightarrow M\notin N\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DX
Xem chi tiết
DH
Xem chi tiết
TK
Xem chi tiết
KN
Xem chi tiết
NK
Xem chi tiết
TK
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết