NN

Cho xAy<90độ Trên tia Ax lấy các điểm B và C. Qua B và C vẽ hai đường thẳng song song cắt tia Ay ở D và E, qua E vẽ đường thẳng song song với CD, cắt tia Ax ở F.

a)     Chứng minh AB/AC=AC/AF. Từ đó suy ra AC2=ABxAF

b)    Qua B, kẻ đường thẳng song song CD cắt Ay ở M. Trên CF lấy điểm N sao cho CN=DM. Gọi O là giao điểm của CD cà MN. Chứng minh: OM.AD=AC.ON (Không sử dụng kiến thức tam giác đồng dạng).

NT
22 tháng 1 2024 lúc 10:25

a: Xét ΔAEC có BD//EC
nên \(\dfrac{AB}{AC}=\dfrac{AD}{AE}\)(1)

Xét ΔAEF có DC//EF

nên \(\dfrac{AC}{AF}=\dfrac{AD}{AE}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AB}{AC}=\dfrac{AC}{AF}\)

=>\(AC^2=AB\cdot AF\)

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LN
Xem chi tiết
NY
Xem chi tiết
PB
Xem chi tiết
TP
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
HT
Xem chi tiết