Bài 2: Dãy số

NH
Cho (un) u1=1
un+1=un+n^3
A viết 5 số hạng đầu của dãy số
b: viết công thứtổng quátc (un) và chứng minh bằng phương pháp quy nạp
AH
31 tháng 1 2018 lúc 19:58

Lời giải:

a) Từ công thức truy hồi \(u_{n+1}=u_n+n^3\) suy ra:

\(u_1=1\) (theo giả thiết)

\(u_2=u_1+1^3=2\)

\(u_3=u_2+2^3=2+2^3=10\)

\(u_4=u_3+3^3=37\)

\(u_5=u_4+4^3=101\)

b) Ta sẽ chỉ ra công thức tổng quát của dãy là:

\(u_n=1+1^3+2^3+...+(n-1)^3\)

Thật vậy:

Với \(n=2\Rightarrow u_2=1+1^3=2\) (đúng)

Với \(n=3\Rightarrow u_3=1+1^3+2^3=10\) (đúng)

....

Giả sử công thức đúng với \(n=k\), tức là:

\(u_k=1+1^3+2^3+...+(k-1)^3\)

Ta chứng minh nó cũng đúng với \(n=k+1\)

Thật vậy:

\(u_{k+1}=u_k+k^3=1+1^3+2^3+...+(k-1)^3+k^3\)

Do đó công thức đúng với $n=k+1$

Do đó ta có \(u_n=1+1^3+2^3+...+(n-1)^3=1+\left(\frac{n(n-1)}{2}\right)^2\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết