Bài 4: Đường trung bình của tam giác, hình thang

SK

Cho tứ giác ABCD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, AC

a) So sánh độ dài EK và CD, KF và AB

b) Chứng minh rằng \(EF\le\dfrac{AB+CD}{2}\)

HY
21 tháng 4 2017 lúc 17:21

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK = CD/2

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = AB/2

b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = CD/2 + AB/2 = (AB+CD)/2

Vậy EF ≤ (AB+CD)/2

Bình luận (0)
LH
14 tháng 9 2017 lúc 13:19

27. Cho tứ giác ABCD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, AC.

a) So sánh các độ dài EK và CD, KF và AB.

b) Chứng minh rằng EF \(\le\dfrac{AB+CD}{2}\)

Bài giải:

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK =\(\dfrac{CD}{2}\)

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = \(\dfrac{AB}{2}\)

b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = \(\dfrac{CD}{2}\) + \(\dfrac{AB}{2}\) = \(\dfrac{\left(AB+CD\right)}{2}\)

Vậy EF ≤ \(\dfrac{\left(AB+CD\right)}{2}\)



Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
LN
Xem chi tiết
TO
Xem chi tiết
TB
Xem chi tiết
NL
Xem chi tiết
RT
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết