Ôn tập toán 6

MT

Cho tổng C = \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

Chứng tỏ rằng C >1

DV
17 tháng 7 2016 lúc 21:39

\(C=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

    \(>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41}{50}+\frac{50}{100}=\frac{33}{25}=1\frac{8}{25}>1\)

Bình luận (0)
IM
17 tháng 7 2016 lúc 21:40

Ta thấy rằng mỗi số hạng trong tổng đều lớn hơn hoặc bằng \(\frac{1}{100}\)

=> \(C>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}x100=1\)

=> C>1 (Đpcm)

Bình luận (1)

Các câu hỏi tương tự
LH
Xem chi tiết
CD
Xem chi tiết
KK
Xem chi tiết
HT
Xem chi tiết
CD
Xem chi tiết
CD
Xem chi tiết
KH
Xem chi tiết
SJ
Xem chi tiết
CD
Xem chi tiết