Violympic toán 7

H24

cho tam giác nhọn ABC có \(BAC=60\) độ, chứng minh \(BC^2=AB^2+AC^2-AB.AC\)

NV
25 tháng 5 2022 lúc 14:58

Vì \(BAC=60^o\Rightarrow ABH=30^o\Rightarrow AH=\dfrac{AB}{2}\left(1\right)\)

Áp dụng định lý Pytago ta có:

\(AB^2=AH^2+BH^2\) và \(BC^2=BH^2+HC^2\)

\(\Rightarrow BC^2=AB^2-AH^2+AC^2-2.AC.AH+AH^2\)

\(\Rightarrow BC^2=AB^2+AC^2-2AH.AC\left(2\right)\)

Từ (1) và (2) \(\Rightarrowđfcm\)

Bình luận (5)