Bài tập cuối chương VII

QL

Cho tam giác nhọn ABC có AB < AC. Hai đường cao AD và CE cắt nhau tại H. Khi đó

A.\(\widehat {HAB} = \widehat {HAC}\).                    

B.\(\widehat {HAB} > \widehat {HAC}\).    

C.\(\widehat {HAB} = \widehat {HCB}\).               

D.\(\widehat {HAC} = \widehat {BAC}\).

 
KT
17 tháng 9 2023 lúc 22:19

Ta có: AB < AC nên \(\widehat {ACB} < \widehat {ABC}\) (góc ACB đối diện với cạnh AB; góc ABC đối diện với cạnh AC)

Mà tam giác ADB và tam giác ADC vuông tại D.

Vì tổng hai góc nhọn trong một tam giác vuông bằng 90°.

Mà \(\widehat {ACB} < \widehat {ABC}\).

Suy ra: \(90^\circ  - \widehat {ACB} > 90^0 - \widehat {ABC}\) hay \(\widehat {DAC} > \widehat {DAB}\).

Vậy \(\widehat {HAC} > \widehat {HAB}\) hay \(\widehat {HAB} < \widehat {HAC}\).

Suy ra: A, B, D sai.

Đáp án: C.\(\widehat {HAB} = \widehat {HCB}\).

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết