Bài 3: Biểu thức toạ độ của các phép toán vectơ

H24

Cho tam giác MNP có M(0; 1; 2), N(5; 9; 3), P(7; 8; 2).

a) Tìm tọa độ điểm K là chân đường cao kẻ từ M của tam giác MNP.

b) Tìm độ dài các cạnh MN và MP.

c) Tính góc M.

H24
29 tháng 10 2024 lúc 0:02

a) Ta có: \(\overrightarrow {NP}  = (2; - 1; - 1)\)

Gọi K(x;y;z) là chân đường cao kẻ từ M của tam giác MNP

=> \(\overrightarrow {NK}  = (x - 5;y - 9;z - 3)\)

\(\overrightarrow {NK} \) cùng phương với \(\overrightarrow {NP} \) nên \(x - 5 = 2t;y - 9 =  - t;z - 3 =  - t\) => \(K(2t + 2; - t + 9; - t + 3)\)

Ta có: \(\overrightarrow {MK}  = (2t + 2; - t + 8; - t + 1)\)

\(\overrightarrow {MK}  \bot \overrightarrow {NP}  \Leftrightarrow \overrightarrow {MK} .\overrightarrow {NP}  = 0 \Leftrightarrow (2t + 2).2 - ( - t + 8) - ( - t + 1) = 0 \Leftrightarrow t = \frac{5}{6}\)

Vậy \(K(\frac{{11}}{3};\frac{{49}}{6};\frac{{13}}{6})\)

b) Ta có: \(\overrightarrow {MN}  = (5;8;1) \Rightarrow MN = \sqrt {{5^2} + {8^2} + {1^2}}  = 3\sqrt {10} \)

\(\overrightarrow {MP}  = (7;7;0) \Rightarrow MP = \sqrt {{7^2} + {7^2}}  = 7\sqrt 2 \)

c) \(\cos M = \frac{{\overrightarrow {MN} .\overrightarrow {MP} }}{{|\overrightarrow {MN} |.|\overrightarrow {MP} |}} = \frac{{5.7 + 8.7}}{{3\sqrt {10} .7\sqrt 2 }} = \frac{{13\sqrt 5 }}{{30}}\)

Bình luận (0)