Đại số lớp 7

H24

Cho tam giác ABO. Trên Tia đối của tia OA lấy điểm C sao cho OA=OC. Trên tia đối của tia OB lấy điểm D sao cho OB=OD. 

a, CM: tam giác ABO = tam giác CDO

b, CM: AB//CD

c, lấy điểm M,N lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm M,O,N thẳng hàng.

TT
14 tháng 12 2021 lúc 20:01

a) Xét tam giác tam giác ABO và tam giác CDO có:

+ OB = OD (gt).

+ OA = OC (gt).

+  ^AOB = ^COD (2 góc đối đỉnh).

=> Tam giác ABO = Tam giác CDO (c - g - c).

b) Xét tứ giác ABCD có:

+ O là trung điểm của AC (do OA = OC).

+ O là trung điểm của BD (do OB = OD).

=> Tứ giác ABCD là hình bình hành (dhnb).

=> AB // CD (Tính chất hình bình hành).

c) Xét tam giác ABC có:

+ M là trung điểm của AB (gt).

+ O là trung điểm của AC (do OA = OC).

=> MO là đường trung bình.

=> MO // BC (Tính chất đường trung bình trong tam giác). (1)

Xét tam giác BDC có:

+ N là trung điểm của CD (gt).

+ O là trung điểm của BD (do OB = OD).

=> NO là đường trung bình.

=> NO // BC (Tính chất đường trung bình trong tam giác). (2)

Từ (1) và (2) => 3 điểm M; O; N thẳng hàng (đpcm).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HQ
Xem chi tiết
HA
Xem chi tiết
NV
Xem chi tiết
BC
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
CL
Xem chi tiết
NN
Xem chi tiết