PB

Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm dối xứng với M qua D.

a) Chứng minh rằng điểm E đối xứng với điểm M qua AB.

b) Các tứ giác AEMC, AEBM là hình gì? Vì sao?

c) Cho BC = 4cm, tính chu vì tứ giác AEBM.

d) Tam giác vuông ABC có điều kiện gì thì AEBM là hình vuông?

CT
31 tháng 8 2019 lúc 17:17

Giải bài 89 trang 111 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Ta có MB = MC, DB = DA

⇒ MD là đường trung bình của ΔABC

⇒ MD // AC

Mà AC ⊥ AB

⇒ MD ⊥ AB.

Mà D là trung điểm ME

⇒ AB là đường trung trực của ME

⇒ E đối xứng với M qua AB.

b) + MD là đường trung bình của ΔABC

⇒ AC = 2MD.

E đối xứng với M qua D

⇒ D là trung điểm EM

⇒ EM = 2.MD

⇒ AC = EM.

Lại có AC // EM

⇒ Tứ giác AEMC là hình bình hành.

+ Tứ giác AEBM là hình bình hành vì có các đường chéo cắt nhau tại trung điểm của mỗi đường.

Hình bình hành AEBM lại có AB ⊥ EM nên là hình thoi.

c) Ta có: BC = 4cm ⇒ BM = 2cm

Chu vi hình thoi AEBM bằng 4.BM = 4.2 = 8cm

d)- Cách 1:

Hình thoi AEBM là hình vuông ⇔ AB = EM ⇔ AB = AC

Vậy nếu ABC vuông có thêm điều kiện AB = AC (tức tam giác ABC vuông cân tại A) thì AEBM là hình vuông.

- Cách 2:

Hình thoi AEBM là hình vuông ⇔ AM ⊥ BM

⇔ ΔABC có trung tuyến AM là đường cao

⇔ ΔABC cân tại A.

Vậy nếu ΔABC vuông có thêm điều kiện cân tại A thì AEBM là hình vuông.

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
ET
Xem chi tiết
TK
Xem chi tiết
VD
Xem chi tiết
PB
Xem chi tiết
NK
Xem chi tiết
LC
Xem chi tiết
PN
Xem chi tiết
TV
Xem chi tiết