VH

Cho tam giác ABC vuông tại A, đường cao AH. Biết BH= 3,6cm. CH= 6,4cm. a) Tính độ dài các đoạn thẳng AB, góc ACB (góc làm tròn đến độ.) b) Trên cạnh AC lấy điểm M (M khác A; M khác C), kẻ AK vuông góc với BM tại K. Chứng minh rằng: BK.BM=BH.BC, từ đó suy ra tam giác BHK đồng dạng với tam giác BMC.

NT
19 tháng 9 2023 lúc 18:26

 

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

=>AB^2=3,6*10=36

=>AB=6cm

Xét ΔABC vuông tại A có

sin ACB=AB/BC=3/5

=>góc ACB=37 độ

b: ΔABM vuông tại A có AK là đường cao

nên BK*BM=BA^2

ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2

=>BK*BM=BH*BC

=>BK/BC=BH/BM

=>ΔBKH đồng dạng với ΔBCM

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
MN
Xem chi tiết
LP
Xem chi tiết
NA
Xem chi tiết
TN
Xem chi tiết
TX
Xem chi tiết
EN
Xem chi tiết
NK
Xem chi tiết
HD
Xem chi tiết