Hình học lớp 7

MS

Cho tam giác ABC vuông tại A, có góc ABC= 60 độ. Tia phân giác của góc B cắt AC tại E. Từ E vẽ EH vuông góc với BC.
a) CM: Tam giác ABE=Tam giác HBE
b) Qua H vẽ HK song song với BE (K thuộc AC). CM: Tam giác EHK đều
c) HE cắt BA tại M, MC cắt BE tại N. CM: BN là đường trung trực của MC

H24
19 tháng 1 2017 lúc 19:58

A B C E H K N M

a) xét \(\Delta\)vuông ABE và\(\Delta\)vuông HBE có:

BE là cạnh chung

gcABE=gcHBE(BE là tia p.g của gc ABC)

=> tg ABE=tgHBE(cạnh huyền góc nhọn)

b) theo câu a: tg ABE= tg HBE (cmt)=>AB=BH (1)

trong tg vuông ABC có: gc B =60o=> gc C=30o

=> AB=\(\frac{1}{2}\) BC(2)

=> BH = \(\frac{BC}{2}\)mà H thuộc BC => H là trung điểm BC

xét tg BCE có:H là TĐ của BC(cmt)

HK//BE(gt)=> K là trung điểm EC

xét tg vuông HEC có: HK là đường trung tuyến ứng vs cạnh huyền

=> HK=EK= \(\frac{EC}{2}\)=> tg HEK cân ở K

lại có:gc EKH = gc ACB+gc KHC( góc ngoài cuả tgHKC)

gc KHC=gc EBC=30o( đồng vị ,HK//BE)

do đó gc EHK=gc ACB+gc EBC=30+30=60o

tam giác cân có 1 góc = 60 o là tam giác đều

c)(nhiều cách lúm)

trong tg vuông HBM: gc HBM= 60o=>gc HMB= 30o

=>\(BH=\frac{1}{2}BM\)mà BH= \(\frac{1}{2}BC\)(cmt )

=> BM=BC=> tg BMC cân ở B

BN là đường p.g của gcMBC

=> BN đồng thời là đường trung trực của tgMBC hay của cạnh MC

Bình luận (1)