Áp dụng định lí Py-ta-go vào △ABC, Ta có
\(AB^2+AC^2=BC^2\)
\(\Rightarrow9^2+12^2=BC^2\Leftrightarrow81+144=BC^2=225\)
\(\Rightarrow BC=15\)
Câu b dễ bn tự làm nha
Áp dụng định lí Py-ta-go vào △ABC, Ta có
\(AB^2+AC^2=BC^2\)
\(\Rightarrow9^2+12^2=BC^2\Leftrightarrow81+144=BC^2=225\)
\(\Rightarrow BC=15\)
Câu b dễ bn tự làm nha
Cho tam giác ABC vuông tại A có AB=16cm, AC=12cm. a) tính BC. b) vẽ AH vuông góc với BC tại H, trên HB lấy E sao cho HE=HC. chứng minh AC=AE. c) Trên tia đối tia HA lấy D sao cho DH=AH. chứng minh ED vuông góc AB. d) chứng minh CH<AH
cho tam giác abc vuông tại A,biết AB=9cm;AC=12 cm
a,Tính BC
b,Trên tia đối của tia Ab lấy điểm D sao cho AB=AD.CM tam giác CAB cân
c,Từ A vẽ Ah vuông góc BC tại H,AK vuông góc DC tại K.Cm tam giác AHC=tam giác AKC
d,Cm HK// BD
Cho tam giác ABC vuông tại A (AB < AC). Trên tia đối của tia AB, lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB.
a) Chứng minh tam giác ABC = tam giác ADE
b) vẽ ah vuông góc bc tại h chứng minh tam giác bah và tam giác ach
c) tia ha cắt dc tại k chứng minh k là trung điểm của DE
d) chứng minh bd // ce và bd + ce bằng be2
Cho tam giác ABC vuông tại A và có đường phân giác BD. Kẻ đường thẳng DH vuông
góc với BC tại điểm H. Trên tia đối của tia AB lấy điểm K sao cho AK = CH.
1. Chứng minh ba điểm H,D,K thẳng hàng và chứng minh BD vuông góc với KC.
2. (*) Chứng minh rằng 2(AD + AK) > CK.
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
Cho ΔABC vuông tại A có AB =9cm, BC =15 cm, vẽ AD ⊥ BC (D ⊥ BC).
a) Tính AC, so sánh BD và DC.
b) Trên đoạn thẳng DC lấy điểm N sao cho DB = DN. Chứng minh ΔABN lầ tam giác cân.
c) Kẻ BE ⊥ AN cắt AD tại H. Chứng minh NH ⊥ AB.
Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh : BC = DE.
b) Chứng minh : tam giác ABD vuông cân và BD // CE.
c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N . Chứng minh : NM // AB.
d) Chứng minh : AM = DE/2.
cho tam giác ABC vuông tại A , có AB =5 cm , BC = 12cm . trên tia đối của tia BA lấy điểm D sao cho BD = BA , trên cạnh BC lấy điểm E sao cho BE = 4 cm .
a) tính AC
b) chứng minh tam giác EAD là tam giác cân
c ) tia AE cắt DC tại K . chứng minh K là trung điểm của của đoạn thẳng DC
d) chứng minh : AD = 4EK
tam giác abc vuông tại a (ab<ac). tia đối ac lấy điểm d sao cho ad=ab, tia đối ab lấy điểm e sao cho ae=ac. đường cao ah của tam giác abc tia ah cắt cạnh de tại m a kẻ đường thẳng vuông góc tại k đường thẳng cắt bc tại n
chứng minh
a,bc=de
b,