H24

cho tam giác ABC vuông tại A, BD là phân giác của góc ABC (D thuộc AC). Trên BC lấy điểm K sao cho BK=BA a, Chứng minh tam giác BAD=tam giác BKD. Từ đó suy ra AD=DK b, chứng minh DK vuông góc với BC và góc ABK = góc CDK c, trên tia đối của tia DK lấy điểm E sao cho DE=DC. Chứng minh ba điểm B, A, E thẳng hàng.

NL
21 tháng 4 2023 lúc 6:38

a.

Xét \(\Delta BAD\) và \(\Delta BKD\) có:

\(\left\{{}\begin{matrix}BA=BK\left(gt\right)\\\widehat{ABD}=\widehat{KBD}\left(gt\right)\\BD\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BAD=\Delta BKD\left(c.g.c\right)\)

\(\Rightarrow AD=DK\)

b.

Cũng do \(\Delta BAD=\Delta BKD\Rightarrow\widehat{BKD}=\widehat{BAD}\)

Mà \(\widehat{BAD}=90^0\left(gt\right)\Rightarrow\widehat{BKD}=90^0\)

\(\Rightarrow DK\perp BC\)

\(\Rightarrow\widehat{ABK}=\widehat{CDK}\) (cùng phụ \(\widehat{ACB}\))

c.

Xét hai tam giác ADE và KDC có:

\(\left\{{}\begin{matrix}AD=DK\left(cmt\right)\\\widehat{ADE}=\widehat{KDC}\left(\text{đối đỉnh}\right)\\DE=DC\left(gt\right)\end{matrix}\right.\)  \(\Rightarrow\Delta ADE=\Delta KDC\left(c.g.c\right)\)

\(\Rightarrow\widehat{DAE}=\widehat{DKC}=90^0\)

\(\Rightarrow\widehat{BAE}=\widehat{BAC}+\widehat{DAE}=90^0+90^0=180^0\)

\(\Rightarrow B,A,E\) thẳng hàng

Bình luận (0)
NL
21 tháng 4 2023 lúc 6:39

loading...

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TA
Xem chi tiết
KQ
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
PN
Xem chi tiết
PN
Xem chi tiết
PN
Xem chi tiết
DL
Xem chi tiết