Hình học lớp 7

NM

cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D.

a) Gọi M,N lần lượt là trung điểm của BC. Chứng minh AM = CN b) Gọi O là giao điểm của AC và BD. Chứng minh OA = OC và OB = OD c) Chứng minh M, O, N thẳng hàng
HA
30 tháng 7 2017 lúc 8:12

Tự vẽ hình.

a) Vì AD // BC nên \(\widehat{DAC}=\widehat{BCA}\) (so le trong) (1)

AB // CD \(\Rightarrow\widehat{BAC}=\widehat{DCA}\) (so le trog) (2)

Xét \(\Delta ABC;\Delta CDA:\)

_ (1)

_ (2)

_ AC chung

\(\Rightarrow\Delta ABC=\Delta CDA\left(g.c.g\right)\)

\(\Rightarrow BC=DA\)

\(\Rightarrow BM+CM=AN+DN\)

\(BM=CM;AN=DN\)

\(\Rightarrow CM=AN\)

b) Xét \(\Delta OAD;\Delta OCB:\)

\(\widehat{OAD}=\widehat{OCB}\) (so le trog)

\(AD=CB\left(a\right)\)

\(\widehat{ADO}=\widehat{CBO}\) (so le trong)

\(\Rightarrow\Delta OAD=\Delta OCB\left(g.c.g\right)\)

\(\Rightarrow OA=OC;OD=OB\) (2 cặp cạnh tương ứng)

c) Xét \(\Delta NDO;\Delta MBO:\)

\(ND=MB\) (suy từ câu a)

\(\widehat{NDO}=\widehat{MBO}\) (so le trog)

\(DO=BO\) (câu b)

\(\Rightarrow\Delta NDO=\Delta MBO\left(c.g.c\right)\)

\(\Rightarrow\widehat{NOD}=\widehat{MOB}\)

\(\widehat{NOD}+\widehat{BON}=180^o\) (kề bù)

\(\Rightarrow\widehat{MOB}+\widehat{BON}=180^o\)

\(\Rightarrow M,O,N\) thẳng hàng.

Bình luận (2)
HA
30 tháng 7 2017 lúc 9:03

Bổ sung thêm ở câu a) nhé!

... \(\Rightarrow CM=AN\)

Xét \(\Delta AMN;\Delta CNM:\)

\(AN=CM\) (c/m trên)

\(\widehat{ANM}=\widehat{CMN}\) (so le trog)

MN chung

\(\Rightarrow\Delta AMN=\Delta CNM\left(c.g.c\right)\)

\(\Rightarrow AM=CN\rightarrowđpcm\).

Bình luận (0)
AL
1 tháng 8 2017 lúc 8:26

goi m,n lan luot là trung điểm của BC và canh nào nữa

Bình luận (1)

Các câu hỏi tương tự
DT
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
GH
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
VT
Xem chi tiết