Violympic toán 7

TL

Cho tam giác ABC, góc A = 90o , AB<AC. Trên cạnh AC lấy điểm D sao cho AD=AB. Trên tia đối của tia AB sao cho AE=AC

a) CMR: DE\(\perp\) BC

b) Biết \(4\widehat{B}=5\widehat{C}\) . Tính số đo góc AED ?

GT
7 tháng 1 2018 lúc 13:11

hình tự vẽ... > . < ...

a) Gọi giao điểm của BC và ED là I

Xét ΔABC và ΔADE có:

\(AB=AD\left(gt\right)\)

\(\widehat{BAC}=\widehat{DAE}=90^0\)

\(AE=AC\left(gt\right)\)

=> ΔABC = ΔADE ( c.g.c )

\(\widehat{C}=\widehat{E}\) ( 2 góc tương ứng ) (*)

Do ΔABC có \(\widehat{A}=90^0\)

\(\widehat{B}+\widehat{C}=90^0\) (**)

Từ (*) ,(**) \(\Rightarrow\widehat{B}+\widehat{E}=90^0\)

ΔIEB có : \(\widehat{B}+\widehat{E}+\widehat{EIB}=180^0\)

hay : \(90^0+\widehat{EIB}=180^0\)

\(\Rightarrow\widehat{EIB}=90^0\)

hay ED⊥BC

b) Từ \(4\widehat{B}=5\widehat{C}\Rightarrow\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}\)

ΔABC vuông tại A => \(\widehat{B}+\widehat{C}=90^0\)

+) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{5+4}=\dfrac{90^0}{9}=10\)

\(\dfrac{\widehat{C}}{4}=10\Rightarrow\widehat{C}=10\cdot4=40^0\)

\(\widehat{C}=\widehat{AED}\) ( 2 cạnh tương ứng )

\(\Rightarrow\widehat{AED}=90^0\)

Vậy..........

Bình luận (0)

Các câu hỏi tương tự
PD
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
NP
Xem chi tiết
DT
Xem chi tiết
LN
Xem chi tiết
MA
Xem chi tiết
H24
Xem chi tiết
MA
Xem chi tiết