Cho tam giác ABC, đường cao AH (H thuộc cạnh BC). Trên AH lấy điểm D. Nếu DC > DB thì AC > AB.
Chúc bạn học tốt!
Cho tam giác ABC, đường cao AH (H thuộc cạnh BC). Trên AH lấy điểm D. Nếu DC > DB thì AC > AB.
Chúc bạn học tốt!
tam giác abc vuông tại a (ab<ac). tia đối ac lấy điểm d sao cho ad=ab, tia đối ab lấy điểm e sao cho ae=ac. đường cao ah của tam giác abc tia ah cắt cạnh de tại m a kẻ đường thẳng vuông góc tại k đường thẳng cắt bc tại n
chứng minh
a,bc=de
b,
cho tam giác abc vuông tại a đường cao ah abc có ab<ac. Trên cạnh AC lấy điểm E sao cho AB = AE. Tia phân giác của góc A cắt BC tại D A trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh BE song song FC
cho tam giác ABC có AB=AC .H là trung điểm của BC a, Chứng minh tam giác ABH=ACH b, Chứng minh AH vuống góc BC c, Trên cạnh AB lấy điểm M . Trên cạnh AC lấy điểm N sao cho AM =AN .gọi E là giao điểm của AH và NM .Chúng minh MN song song với BC ( ghi giả thiết kết luận nha )
Cho ΔABC vuông tại A có AB =9cm, BC =15 cm, vẽ AD ⊥ BC (D ⊥ BC).
a) Tính AC, so sánh BD và DC.
b) Trên đoạn thẳng DC lấy điểm N sao cho DB = DN. Chứng minh ΔABN lầ tam giác cân.
c) Kẻ BE ⊥ AN cắt AD tại H. Chứng minh NH ⊥ AB.
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
Cho tam giác ABC vuông tại A có đường cao AH. trên cạnh BC lấy điểm D sao cho BD =BA
chứng minh rằng: AB+AC<BC+AH
cho tam giác abc vuông tại a đường phân giác bk (k thuộc ac). kẻ ki vuông góc với bc i thuộc bc A chung minh abk=ibkB kẻ đường cao ah cua abc chung minh ai la tia pg cua hac C lấy điểm M thuộc tia AH sao cho AM=AC chứng minh IM vuông góc AC
Cho tam giác ABC cân tại A. Lấy H thuộc cạnh AC, K thuộc cạnh AB sao cho AH = AK. Chứng minh rằng: a) ABH = ACK . b) Nối K với H, Chứng minh KH // BC. c) Gọi O là giao điểm của BH và CK. Chứng minh tam giác BOC cân.
Bài 4: Cho tam giác ABC vuông tại B ( AB < BC ), phân giác AE ( E thuộc BC ). Từ E kẻ ED vuông góc AC ( D thuộc AC )
a) C/m tam giác ADE = tam giác ABE
b) So sánh EB và EC
c) Kẻ CH vuông AE ( H thuộc AE ). Trên tia đối của HA lấy điểm F sao cho HF = HE. C/m tam giác CEF cân và BD // CH
d) Gọi O là giao điểm của CE và AB. C/m E,D,O thẳng hẳng