Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Hình học lớp 7

TN

cho tam giac ABC deu tren cac canh AB va AC lan luot lay cac diem M va N sao cho AM=AN chung minh tam giac AMN la tam giac deu b) MN song song voi BC

HN
28 tháng 2 2017 lúc 23:15

A B C M N

a) Xét \(\Delta ABC\) có AM = AN (gt)

\(\Rightarrow\)\(\Delta AMN\) cân tại A (t/c)

\(\widehat{A} = 60^0\)(Tg ABC đều)

\(\Rightarrow\)\(\Delta AMN \) đều

b) Ta có:

\(\widehat{B} = 60^0\)

\(\widehat{AMN} = 60^0\)

mà 2 góc này nằm ở vị trí đồng vị

\(\Rightarrow\)MN // BC

Bình luận (0)
HA
28 tháng 2 2017 lúc 22:24

a) Vì \(\Delta ABC\) đều nên \(\widehat{MAN}=60^o\) (1)

\(AM=AN\Rightarrow\Delta AMN\) cân tại A (2)

Từ (1) và (2) suy ra \(\Delta AMN\) đều.

b) Do \(\Delta ABC\) đều \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Áp dụng t/c tổng 3 góc trog 1 t/g ta có:

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)

\(\Rightarrow2\widehat{ABC}=180^o-\widehat{BAC}\)

\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(3\right)\)

Do \(\Delta AMN\) cân tại A

\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)

Áp dụng t/c tổng 3 góc trog 1 t/g ta có:

\(\widehat{AMN}+\widehat{ANM}+\widehat{BAC}=180^o\)

\(\Rightarrow2\widehat{AMN}=180^o-\widehat{BAC}\)

\(\Rightarrow\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\widehat{ABC}=\widehat{AMN}\)

mà 2 góc này ở vị trí đồng vị nên MN // BC.

Bình luận (0)

Các câu hỏi tương tự
DM
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết
HL
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết