Hình học lớp 7

CT

Cho tam giác ABC, D là trung điểm của AB, đường thẳng qua D song song với BC cắt AC ở E, đường thẳng qua E song song với AB cắt BC ở F. Chứng minh rằng:

a) AD=EF

b) tam giác ADE bằng tam giác EFC

c) AE=EC

LF
25 tháng 12 2016 lúc 8:38

A D E B F C a)Nối D với F. Xét \(\Delta BDF\)\(\Delta FDE\) ta có:

\(\widehat{BDF}=\widehat{DFE}\) (so le trong (Vì AB//EF (gt)))

DF cạnh chung

\(\widehat{DFB}=\widehat{FDE}\) (so le trong (Vì DE//BC (gt)))

\(\Rightarrow\Delta BDF\)\(=\Delta FDE\) (g.c.g)

\(\Rightarrow DB=EF\) (2 cạnh tương ứng )

\(DB=DA\) (D là trung điểm AB)

Suy ra AD=EF

b)Xét \(\Delta ADE\)\(\Delta EFC\:\) ta có:

\(\widehat{ADE}=\widehat{CFE}\) (\(=\widehat{BAC}\); đồng vị của DE//BC và EF//AB)

\(AD=EF\) (cmt)

\(\widehat{DAE}=\widehat{FEC}\) (đồng vị của DE//BC)

\(\Rightarrow\Delta ADE=\Delta EFC\) (g.c.g)

c)Vì \(\Delta ADE=\Delta EFC\) (cmt)

Suy ra \(AE=EC\) (2 cạnh tương ứng )

 

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
BY
Xem chi tiết
HN
Xem chi tiết
NH
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết