Bài 7. Tính chất ba đường trung tuyến của tam giác

QL

Cho tam giác ABC có đường trung tuyến BM bằng đường trung tuyến CN. Chứng minh rằng tam giác ABC cân.

KT
21 tháng 9 2023 lúc 14:03

Tham khảo:

Gọi D là giao điểm của CN và BM

\( \Rightarrow \) D là trọng tâm tam giác ABC

\( \Rightarrow CD = \dfrac{2}{3}CN = BD = \dfrac{2}{3}BM\) ( do BM = CN )

\( \Rightarrow \) tam giác DBC cân tại D do BD = CD

\( \Rightarrow \) \(\widehat {DBC} = \widehat {DCB}\)(2 góc đáy trong tam giác cân)  (1)

Xét \(\Delta NDB\) và \(\Delta MDC\) có :

BD = CD

\(\widehat {NDB} = \widehat {MDC}\) (2 góc đối đỉnh)

ND = DM (do cùng \( = \dfrac{1}{3}CN = \dfrac{1}{3}BM\) (tính chất của trung trực đi qua trọng tâm tam giác ))

 \( \Rightarrow \Delta NDB=\Delta MDC\) (c.g.c)

\( \Rightarrow \,\widehat {NBD} = \widehat {MCD}\)(2 góc tương ứng) (2)

Từ (1) và (2) \( \Rightarrow \widehat {ABC} = \widehat {ACB}\) do \(\widehat {ABC} = \widehat {NBD} + \widehat {DBC}\) và \(\widehat {ACB} = \widehat {MCD} + \widehat {DCB}\)

\( \Rightarrow \Delta ABC\) cân tại A (do 2 góc bằng nhau)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết