Hình học lớp 7

NT

cho tam giac ABC can tai C.Ke tia phan giac voi goc C cat AB tai I.Biet AC=5cm,AB=6cm. a,Chung minh tam giac ACI=tam giac BCI va AI=BI. b,Tinh do dai CI. c, Qua A va B lan luot ke cac duong thang vuong goc voiAC va BC chung cat nhau tai K.Chung minh 3 diem C,I,K thang hang

AT
15 tháng 3 2017 lúc 22:09

Hình vẽ:

I K C A B

Giải:

a/ Xét \(\Delta ACI\)\(\Delta BCI\) có:

AI: chung

\(\widehat{ACI}=\widehat{BCI}\left(gt\right)\)

AC = BC (gt)

=> \(\Delta ACI=\Delta BCI\left(c-g-c\right)\left(đpcm\right)\)

=> AI = BI (c t/ứng)(đpcm)

b/ \(\Delta ACI=\Delta BCI\left(ýa\right)\)

\(\Rightarrow\widehat{AIC}=\widehat{BIC}\) (g t/ứng)

\(\widehat{AIC}+\widehat{BIC}=180^o\) (kề bù)

=> \(\widehat{AIC}=\widehat{BIC}=90^o\)

=> CI _l_ AB

Vì AI = BI mà AB = 6

=> AI = BI = 3

Áp dụng định lý Py-ta-go vào \(\Delta ACI\) vuông tại I có: \(CI^2+AI^2=AB^2\)

hay \(CI^2+3^2=5^2\)

\(\Rightarrow CI^2=5^2-3^2=16\)

\(\Rightarrow CI=4\left(cm\right)\)

c/ Xét 2 \(\Delta vuông\): \(\Delta ACK\)\(\Delta BCK\) có:

AK: chung

AC = BC (gt)

=> \(\Delta ACK=\Delta BCK\left(ch-cgv\right)\)

\(\Rightarrow\widehat{ACK}=\widehat{BCK}\) (g t/ứng)

=> CK là tia p/g của góc ACB (1)

Lại có: CI là tia p/g của góc ACB (gt)

=> CK trùng CI

=> 3 điểm C, I, K thẳng hàng (đpcm)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
CD
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
NN
Xem chi tiết
PD
Xem chi tiết
TN
Xem chi tiết