Cho tam giác ABC cân tại B kẻ BH vuông góc với AC(H thuộc AC)
a, CM:HA=HC
b,Kẻ HD vuông góc với AB (D thuộc AB), HE vuông góc với BC( E thuộc BC):CHứng minh HD=HE
c, CM : tam giác BDE cân
d, CM: \(BE^2+DH^2=BC^2-HA^2\)
Cho tam giác ABC vuông tại A có AB=16cm, AC=12cm. a) tính BC. b) vẽ AH vuông góc với BC tại H, trên HB lấy E sao cho HE=HC. chứng minh AC=AE. c) Trên tia đối tia HA lấy D sao cho DH=AH. chứng minh ED vuông góc AB. d) chứng minh CH<AH
Cho tam giác ABC cân tại A (BAC <90°), Kẻ BI vuông góc với AC tại 1. Trên cạnh BC lấy điểm M bất kỳ (M khác B và C). Gọi D, E, F lần lượt là chân đường vuông góc kẻ từ M đến các cạnh AB, AC, BI. 1) Chứng minh rằng tam giác DBM = tam giác FMB. 2) Cho BC = 10cm, CI = 6cm. Tính tổng MD + ME. 3) Trên tia đối của tia CA lấy điểm K sao cho CK = EI. Chứng minh BC đi qua trung điểm của đoạn thẳng DK.
bài 1
cho ΔABC cân tại B,kẻHBvuông AC
a,chứng minh HB=HC
b,kẻ HD vuông AB (D∈AB),HE vuông BC (E∈BC) chứng minh HD=HE
c,chứng minh ΔBDE cân
d,chứng minh\(^{BE^2+DH^2=BC^2-HA^2}\)
Cho Tam Giác ABC cân Tại A.gọi M là trung điểm của BC
a)C/m:Tam giác ABC = Tam giác ACM và AM vuông góc với BC
b) kẻ ME vuông góc với AB tại E,ME vuông góc với AC tại F.Tam giác EMF cân Tại M.
c)Cho AB = AC = 5cm;BC = 6cm.Tính AM
d)c/m EF//BC.
Giải nhanh hộ tui phát,đang ktra mà óc bã đậu quá
Bài 4: Cho tam giác ABC vuông tại B ( AB < BC ), phân giác AE ( E thuộc BC ). Từ E kẻ ED vuông góc AC ( D thuộc AC )
a) C/m tam giác ADE = tam giác ABE
b) So sánh EB và EC
c) Kẻ CH vuông AE ( H thuộc AE ). Trên tia đối của HA lấy điểm F sao cho HF = HE. C/m tam giác CEF cân và BD // CH
d) Gọi O là giao điểm của CE và AB. C/m E,D,O thẳng hẳng
Cho tam giác ABC cân tại A . Kẻ BD vuông góc với đường thẳng AC tại D . Lấy điểm E bất kì trên cạnh BC ( E khác B , khác C ) . Kẻ EF , EG , EH lần lượt vuông góc với AB ,AC , BD .
1. Chứng minh rằng tam giác HBE bằng tam giác FEB
2. Chứng minh rằng EF + EG = BD
3. Trên tia đối của tia CA , lấy điểm K sao cho KC = BF ; BC cắt FK tại I . Chứng minh rằng I là trung điểm của FK
4. Nêu cách xác định vị trí của điểm E trên BC để tam giác EGH vuông cân
Giúp mk câu 3;4 thôi ạ!
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM