Bài 4 : Cho tam giác ABC cân ( AB = AC ) ; Trên tia đối của tia BC lấy điểm D , trên tí đối của tia CB lấy điểm E sao cho BD = CE
a. Chứng minh : AD = AE
b. Lấy M là trung điểm của BC ; Chứng minh AM là tia phân giác góc DAE
cho tam giác ABC cân tại A, có cạnh đáy BC=6cm. Chu vi là 16. Trên tia đối của tia BC lấy điểm D sao cho BD=BA và trên tia đối của tia CB lấy điểm E sao cho CE=CA. Tìm chu vi của tam giác ADE
( khỏi vẽ hình nha bạn)
mình cảm ơn các bạn nhiều nhé!!!
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
1)Cho tam giác đều ABC, phân giác BD và CE cắt nhau tại O. CMR:
a) BD vuông góc AC và CE vuông góc Ab
b) OA=OB=OC
2)Cho tam giác ABC vuông tại A có góc C=45 độ. Vẽ phân giác AD. Trên tia đổi của tia AD lấy điểm E sao cho AE=BC. Trên tia đối của tia CA lấy điểm F sao co CF=AB
CMR: BE+BF và BE vuông BF
giúp vs
Cho tam giác ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B, C ). Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB, trên tia đối của tia MC lấy điểm F sao cho MF = MC. CMR:
a, Tam giác AME = tam giác DMB; AE // BC
b, Ba điểm E, A, F thẳng hàng
c, BF // CE
1. Cho tam giác ABC có góc B=50 độ. Từ A kẻ đường thẳng \\ vs BC cắt tia p/g của góc B ở E.
a) CM: ΔAEB là tam giác cân.
b) Tính góc BAE
2. cho tam giác ABC cân tại A. Trên cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD= AE. Gọi M là trung điểm của BC. CMR:
a) DE\\BC
b) ΔMBD=ΔMCE
c)ΔAMD=ΔAME.
3.Cho tam giác ABC cân tại A. Gọi Am là tia phân giác góc ngoài tại đỉnh A của tam giác đó. CM Am\\BC.
4. Cho tam giác đều ABC. Trên tia đối của các tia AB,BC,CA lấy theo thứ tự ba điểm D,E,F sao cho AD=BE=CF. CM ΔDEF là tam giác đều.
( GIÚP MÌNH VỚI NHÉ!!! VẼ HÌNH VÀ TRÌNH BÀY CHI TIẾT NHÉ! MÌNH ĐANG CẦN GẤP! THANKS!!! ^_^)
Cho tam giác ABC có góc A bằng 90 độ Trên tia đối của tia CA lấy điểm D sao cho CD = CA trên tia CB lấy điểm E sao cho CE = CB Tính góc CDE
Cho tam giác ABC có góc A bằng 90 độ . Trên tia đối của tia CA lấy D sao cho CD=CA. Trên tia đối của tia CB lấy E sao cho CE=CB . Qua C kẻ đường thẳng d cắt BD lần lượt tại M, N . C/m : C là trung điểm của MN ( chứng minh 2 tao giác bằng nhau theo 2 trường hợp đầu )