Violympic toán 7

DH

Cho tam giác ABC cân tại A , M là một điểm thuộc cạnh BC và N thuộc đường thẳng BC nhưng nằm ngoài đoạn BC.

C/minh: AM < AB < AN

LN
12 tháng 4 2018 lúc 13:02

A B N C M

Do trong một tam giác cân, hai góc của đáy luôn luôn < 90\(^0\) => Góc BCA là góc nhọn

Mà góc ACN kề bù với góc ACM => ACN là góc tù

Trong một tam giác chỉ có thể có nhiều nhất một góc tù nên ANC là góc nhọn

Hay góc ANC < ACN => AN > AC ( Quan hệ giữa cạnh và góc đối diện )

Mà AC = AB ( Do tam giác ABC cân)

=> AN > AB

*Xét hai cạnh AM và AB có :

*TH1 : M là Trung Điểm của BC ( Do M thuộc BC đã cho ở gt )

=> M là Đường vuông góc hạ từ đỉnh A

=> AM < AB ( Quan hệ giữa đường vuông góc và hình chiếu )

*TH2 : M không phải là trung điểm của BC ( M thuộc BC )

- MB < MC hoặc MC > MB ( Hạ đường vuông góc để chứng minh )
=> AM < AB ; AM < AC ( Hình chiếu lớn hơn thì đường xiên lớn hơn)

KL : Vậy với M nằm bất kì trong BC, N là một điểm bất kì nằm ngoài BC, khi tam giác ABC cân thì AM<AB<AN

Bình luận (0)

Các câu hỏi tương tự
VQ
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
LT
Xem chi tiết
3T
Xem chi tiết
H24
Xem chi tiết
AK
Xem chi tiết
H24
Xem chi tiết